## SXT Mirror Technology Development Will Zhang X-ray Astrophysics Laboratory NASA Goddard Space Flight Center #### **Mirror Technology Development Team** K.W. Chan<sup>1</sup>, D.A. Content, T.J. Hadjimichael<sup>2</sup>, Charles He<sup>2</sup>, M. Hong<sup>3</sup>, L. Kolos, J.P. Lehan<sup>1</sup>, J.M. Mazzarella<sup>3</sup>, R. McClelland<sup>3</sup>, D.T. Nguyen, L. Olsen<sup>3</sup>, S.M. Owens, R. Petre, D. Robinson, R. Russell<sup>3</sup>, T.T. Saha, M. Sharpe<sup>3</sup>, J. Sturm, T. Wallace, W.W. Zhang \*\*NASA Goddard Space Flight Center\* 1 also University of Maryland, Baltimore County 2 Ball Aerospace and Technologies Corp. 3 Stinger Ghaffarian Technologies, Inc. M.V. Gubarev, W.D. Jones, S.L. O'Dell *NASA Marshall Space Flight Center* D. Caldwell, W. Davis, M. Freeman, W. Podgorski, R. Rasche, P.B. Reid, S. Romaine Smithsonian Astrophysical Observatory #### **SXT Mirror Technology Development Charter** - Identify problems unique to Con-X SXT mirrors that have not been encountered or solved for previous missions - Devise solutions to these problems; Demonstrate their validity through analysis and experimentation - Establish design principles and build prototypes to prove that they meet requirements - Subject the prototypes to x-ray and appropriate environment tests to demonstrate TRL-6 ## The Fourfold Challenge - Meeting performance requirements: angular resolution and effective area - Meeting mass requirements - Minimizing production cost - Minimizing production schedule ## The Four "Simple" Tasks - Make forming mandrels - Make mirror segments - Measure and qualify mirror segments - Align mirror segments and affix them to a permanent housing The devil is in the details! ### Major Accomplishments since Last FST - Bonded, aligned, and X-ray tested a pair of mirrors, achieving 15" HPD at 8 keV (Rohrbach, Olsen et al.) - Reduced mirror sag error from ~13" to ~6"; Reduced midfrequency error, obviating epoxy replication (Zhang et al.) - Implemented whole-surface mirror metrology (Lehan et al.) - Began the investigation of multiple alignment and mount methods: - Horizontal passive mount (Rohrback et al.) - Vertical active mount (Podgorski et al.) - Vertical passive mount (Chan et al.) - Completed glass strength test (He et al.) Constellation - Began parametric study to minimize stress load on mirror segments (Freeman et al.) - Began forming mandrel technology development (O'Dell et al.) #### **SXT Mirror Technology Roadmap** # Development of forming mandrel fabrication technology (O'Dell et al.) - Take advantage of the precision machining technology that has been developed in industry over the last two decades - Take advantage of the axial symmetry of X-ray optics - Apply knowledge and lessons learned in the last few years from our mandrel fabrication efforts both inhouse and in industry: (1) material selection and (2) fabrication techniques, etc. - Enable faster and cheaper production of better forming mandrels # Development of forming mandrel fabrication technology (O'Dell et al.) # Fabrication of mirror segments (Zhang et al.) Slumping Post-slumping trimming Ir-coating ### Mirror segment metrology (Lehan et al.) #### Status of mirror fabrication ### Mirror alignment: Active Vertical Configuration (Podgorski et al.) ### Mirror alignment: Passive Horizontal Configuration (Rohrbach et al.) # Comparison of prediction and measurement (Reid et al.) - Confirms mirror metrology and performance prediction - Shows that the mirror surface quality is good enough without epoxy replication — 8.04 keV, central 80 per cent of aperture OOO X-ray Test Data, 8.04 keV, central 80 per cent of aperture Constellatio Prediction for another pair: 13" HPD at 8 keV, to be x-ray tested in coming weeks # Mirror alignment: Passive Vertical Configuration (Chan et al.) ### **Status and Outlook** | | | Now | | | Future | | | |-----------------------------------------|-----------------------------|----------------------------------------------|-----------------------|----------------------------|---------------------------------------------------------------------------------------|------------------------------------------------|----------------------------| | Quantity | | Potential Source of Error | Existing<br>Evidence? | Contribution<br>to HPD (") | Method to Reduce or Eliminate Error | Contribution to<br>HPD after<br>Mitigation (") | Comment | | Average radius | | CTE mismatch between mandrel and glass sheet | Maybe | 0 | Account for CTE mismatch in mandrel prescription | 0 | Easy | | | | Measurement distortion | Yes | 0 | Perfect mirror support mechanism | 0 | Moderately har | | | | Unannealed thermal stress | Maybe | 0 | Prolong cooling cycle and use coating stress to counter thermal stress | 0 | Hard | | Focal length<br>(average cone<br>angle) | | Forming mandrel | Yes | 0 | Apply more stringent quality requirements on mandrel | 0 | Easy | | | | Forming process | No | o | Devise solution when necessary | o | Easy | | Focus quality (cone<br>angle variation) | | Unannealed thermal stress | Maybe | 1 | Prolong cooling cycle and use coating stress to counter thermal stress | 1 | Maybe easy | | | | Measurement distortion | Yes | 4 | Perfect mirror support mechanism | 0 | Moderately har | | Sag | | Forming mandrel | Yes | 0 | Apply more stringent quality requirements on mandrel | 0 | Easy | | | | Coating stress | Maybe | 0 | Reduce/eliminate it or balance it | 0 | Maybe easy | | | | Measurement distortion | Yes | 6 | Perfect mirror support mechanism | 0 | Moderately har | | | | Unannealed thermal stress | Maybe | | Prolong cooling cycle and use coating stress to counter thermal stress | 1 | Maybe hard | | Axial<br>figure | Low<br>frequency<br>figure | Forming mandrel | Yes | 5 | Apply more stringent quality requirements on<br>mandrel | 2 | Easy | | | | BN-coating changing mandrel sag | No | o | Devise solution when necessary | 0 | Easy | | | | Thermal stress due to inadequate annealing | Yes | 0 | Prolong cooling cycle | 0 | Maybe easy | | | Mid<br>frequency<br>figure | Forming mandrel | No | o | Apply more stringent quality requirements on mandrel | 0 | Maybe easy o<br>maybe hard | | | | BN-coating changing mandrel figure | Yes | 8 | Improve application and buffing techniques; RF-<br>sputter; Reactive sputter | 3 | Hard | | | | Maximum forming temperature | Yes | o | Optimize as necessary to achieve optimal balance between mid and low frequency figure | o | Easy | | | High<br>frequency<br>figure | Forming mandrel | No | o | Apply more stringent quality requirements on mandrel if necessary | 0 | Easy | | | | Glass sheet quality | Yes | 2 | Super-polish glass sheets if necessary | 2 | Moderately ha | ## **Challenges for 2008** - Mirror fabrication - Reduction of mid-frequency error caused by BN coating on the mandrel: better buffing and better BN deposition - Reduction of sag error: (1) Reduction of thermal stress with longer anneal time; (2) Balance of thermal stress with coating stress to achieve better figure - Better forming mandrels - Mirror attachment - Bonding with acceptable distortion - Bonding with acceptable movement - Alignment and integration of multiple mirror segments ## Acknowledgements The work is supported in part by **Constellation-X Project Office** Goddard Space Flight Center Internal Research and Development Fund A NASA Astronomy and Physics Research and Analysis Grant **SAO Internal Research Funds**